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Abstract
Theory concerning the emergence and control of chaotic escape from a potential
well by means of autoresonant excitations is presented in the context of
generic, dissipative and multistable systems. General scaling laws relating
both the onset and lifetime of transient chaos to the parameters of autoresonant
excitations are derived theoretically using vibrational mechanics, Melnikov
analysis and energy-based autoresonance theory. Numerical experiments show
that these scaling laws are robust against both the presence of noise and driving
re-shaping.

PACS numbers: 05.45.Gg, 33.80.Gj

(Some figures in this article are in colour only in the electronic version)

Escape from a potential well is an old problem with wide-ranging implications where the
interplay of noise, dissipation, deterministic driving and quantum uncertainty has given rise
to unexpected and intriguing phenomena such as coherent destruction of tunneling [1] and
stochastic resonance [2]. Other specific examples are pulse-shape-controlled tunneling [3],
shot-noise-driven escape in Josephson junctions [4] and thermally induced escape [5]. While
most previous investigations on driven escape have restricted themselves to purely periodic
drivings, chirped excitations also have a demonstrated effectiveness. Chirped lasers, for
example, can reduce the intensity required for infrared multiphoton dissociation of diatomic
molecules to an experimentally realizable intensity range [6]. And chirped optical pulses
have been shown to enhance charge flow in molecular-tunneling junctions [7]. In spite of the
importance of chirped excitations [8], to the best of the author’s knowledge, laws governing
(some of) the associated escape scenarios remain to be revealed. The key to understanding
the aforementioned effectiveness of chirped excitations is essentially the autoresonance (AR)
mechanism: AR-induced energy amplification in nonlinear, driven and deterministic systems
occurs when the system continuously adjusts its amplitude so that its instantaneous nonlinear
period matches the instantaneous driving period of the chirped excitation. Initially studied in
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Figure 1. Generic multistable potential U(x) versus x, and energy levels corresponding to different
separatrices (dashed lines). The inset shows a generic chaotic threshold function A0(ω) versus ω,

and the range [ωth,1, ωth,2] in which homoclinic chaos is expected (see equation (3)).

the context of a Hamiltonian description, AR phenomena have been well known for about half
a century and have been observed in particle accelerators, planetary dynamics, atomic and
molecular physics, and nonlinear oscillators [9], to cite a few examples. Regarding dissipative
systems, energy-based AR (EBAR) theory has recently been proposed and applied to the case
where the system crosses a separatrix associated with its underlying integrable counterpart
[10]. Since in such an escape situation the appearance of transient chaos associated with
the occurrence of homoclinic bifurcations is a ubiquitous phenomenon, the question naturally
arises: How does AR control the chaotic escape scenario, i.e. the onset and lifetime of transient
chaos in generic dissipative multistable systems?

In this work, this fundamental problem is studied in the context of the family of systems
..
x + dU/dx = −η

.
x + γ sin[�(t)t], (1)

where U(x) is a generic multistable potential (see figure 1) and �(t) ≡ ω + αnt
n, n = 1, 2, . . . ,

is a time-dependent frequency with αn being the nth-order sweep rate. One expects [10]
γ sin[�(t)t] to behave as an effective autoresonant excitation whenever the sweep rate is
sufficiently low (adiabatic regime), which is the case considered throughout the present
communication in order to apply Melnikov analysis (MA) to autoresonant excitations. Note
that optimal (exact) AR excitations are generally nonperiodic and unbounded [10], while MA
remains valid for nonperiodic temporal perturbations if they are bounded [11]. Also, the
damping and autoresonant excitation terms are taken to be small amplitude perturbations of
the underlying integrable system so as to deduce analytical expressions for the scaling laws
relating both the onset time ti and lifetime τ of transient chaos to the parameters of the AR
excitation from the MA results [12]. The application of MA to any homoclinic (or heteroclinic)
orbit [xh,j (t),

.
xh,j (t)] of the unperturbed (η = γ = 0) counterpart of equation (1) involves

calculating the corresponding Melnikov function (MF):

Mj(t0) = −D + γR0(ω, t0) + γαnR1(ω, t0) + O
(
γα2

n

)
,

D ≡ η

∫ ∞

−∞

.
x

2
h,j (t) dt > 0,

R0(ω, t0) ≡
∫ ∞

−∞

.
xh,j (t) sin[ω(t + t0)] dt,

R1(ω, t0) ≡
∫ ∞

−∞
(t + t0)

n+1 .
xh,j (t) cos[ω(t + t0)] dt.

(2)
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Note that the price of expanding the MF (cf equation (2)) to discuss the appearance
of simple zeros for αn > 0, while they do not appear for αn = 0, is that the limit
limt0→±∞,αn→0 αnR1(ω, t0) is not defined in such an expansion. However, this does not
alter the validity of the present results since the limiting case αn = 0 corresponds to the
well-known case of a periodic excitation. For such a purely periodic excitation (αn = 0), it
is assumed in the following that the system does not exhibit transient chaos for a given set of
parameter values, i.e. the MF (2) has no simple zeros:

D > γ | max
t0∈R

R0(ω, t0)| ≡ γA0(ω), (3)

where A0(ω) represents a chaotic-threshold function whose generic behavior is shown in
figure 1. Indeed, homoclinic chaos is not possible for sufficiently small ω since a purely
harmonic excitation becomes a constant when ω → 0. (Note that this is no longer valid in
the absence of dissipation. The limiting Hamiltonian case will be considered elsewhere.) For
sufficiently high ω, the dynamics can be analyzed using the vibrational mechanics approach
[13] by separating x(t) = z(t) + ψ(t), where z(t) represents the slow dynamics while ψ(t)

is the fast oscillating term: ψ(t) = ψ0 cos(ωt + ϕ0) with ψ0 = γ
√

η2 + ω2/(ωη2 − ω3),
ϕ0 = arctan(η/ω). On averaging out ψ(t) over time, the slow reduced dynamics of the system
becomes

..
z + dV/dz = −η

.
z,

dV/dz ≡ T −1
∫ T

0
g[z + ψ0 cos(ωt + ϕ0)] dt,

(4)

where g(x) ≡ dU(x)/dx, T ≡ 2π/ω, i.e. that of a purely damped system, and hence
homoclinic chaos is not possible when ω → ∞. Note that this demonstrates that equilibria
are the only attractors of the system for αn > 0. Thus, one concludes that the properties
A0(ω → 0,∞) = 0, A0(ω) � 0 imply via the extreme value theorem (Weierstrass’ theorem
[14]) that the generic chaotic threshold function A0(ω) presents at least one maximum (the
case shown in the inset of figure 1). Physically, the above scenario can be understood by
considering the work done by a purely periodic temporal force: transient chaos is expected
to appear for not too small energy transfer corresponding to a certain range of intermediate
frequencies, but not in the limiting cases of very small and very large frequencies where the
transfer of energy is insufficient to excite homoclinic events. Equation (2) indicates that the MF
Mj(t0) has simple zeros (at sufficiently large values of t0) for any positive value of the sweep
rate because of the factor (t + t0)

n+1 appearing in the definition of R1(ω, t0). Thus, this means
that after a sufficiently long time, ti, which depends upon the system’s parameters and initial
conditions, the instantaneous frequency of the autoresonant excitation reaches a threshold
value �(ti) = ωth,1 that is the lowest frequency satisfying the relationship D/γ = A0(ωth,1)

(see figure 1, inset), i.e. the threshold condition for the onset of chaotic behavior. It is worth
noting that this occurs for any initial condition because of the AR-induced increase of the
system’s energy. Thus, the condition �(ti) = ωth,1 implies the scaling law

ti ∼ (ωth,1 − ω)1/nα−1/n
n , (5)

for the onset time of transient chaos. Similarly, the lifetime τ of the chaotic transients can
be estimated from the instantaneous frequency �(ti + τ) = ωth,2 that is the lowest frequency
satisfying the relationships D/γ = A0(ωth,2), ωth,2 > ωth,1 (see figure 1, inset), i.e.

τ ∼ [(ωth,2 − ω)1/n − (ωth,1 − ω)1/n]α−1/n
n . (6)

We see that the general scaling laws (5) and (6) are inverse-power laws containing the two
parameters (ω, αn) that control the autoresonant excitation while the critical exponent is the
inverse of the chirp order n. Notably, these scaling laws also contain the dependence upon the
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particular potential, initial potential well, and dissipation and excitation strengths through the
threshold frequencies ωth,1, ωth,2. Since the mid-1980s, critical exponents of chaotic transients
have been discussed theoretically in the context of crises in dissipative maps [15]. The present
theory establishes that an inverse-power law remains valid also for dissipative multistable
flows subjected to autoresonant excitations. The connection between such results for maps
and the present ones can be readily understood by assuming that for a purely periodic excitation
(αn = 0) there exists a strange attractor for a certain frequency (ωth,1 < ω < ωth,2) instead
of a periodic attractor (ωth,1 > ω) (see figure 1, inset). According to the above discussion,
the strange attractor disappears for αn > 0 via a boundary crisis and chaotic transients appear
instead, with α = αn,c ≡ 0 being the critical value for the crisis. Therefore, since the non-
existence of simple zeros of the MF is a sufficient condition for the disappearance of transient
chaos, the lifetime of these chaotic transients follows the general inverse-power law

τ ∼ (ωth,2 − ω)1/nα−1/n
n . (7)

Now, applying EBAR theory one can deduce scaling laws relating both the onset time and
lifetime to the autoresonant excitation amplitude. In particular, for Duffing-like potentials one
has that the optimal amplitude scales as γ ∼ [3n(n + 1)!]3/(2n+2)α

3/(2n+2)
n [10] and hence the

scaling law (7), for example, becomes τ ∼ [(ωth,2 − ω)(n + 1)!]1/nγ −(2n+2)/(3n), where one
sees that the critical exponent ranges from 4/3 for a linear chirp to 2/3 for the highest order
chirps.

From an experimental standpoint, it is also useful to discuss the lifetime of the
corresponding metastable states in the initial and final potential wells. According to the
above discussion, the lifetime of the states in the final potential well is infinite since these
states are equilibria. Since it is assumed that the onset time of transient chaos occurs when
the particle’s energy reaches the energy level of the unperturbed separatrix for the first time,
equation (5) also provides an estimate of the lifetime of the particle in the initial potential well
for the case of AR excitations given by equation (1).

Numerical experiments confirmed the accuracy of the above scaling laws in different
systems. Representative results corresponding to a dimensionless Duffing oscillator

..
x = x − x3 − η

.
x + γ sn[2K(m)�(t)t/π;m] + ξ(t) (8)

are shown in figures 2–5 for illustrative purposes. Here, sn(·;m) is the Jacobian elliptic
function of the parameter m ∈ [0, 1] with K(m) being the complete elliptic integral of the first
kind. One has sn(·;m = 0) = sin(·) while, in the other limit, sn(·;m = 1) is the square-wave
function. Note that, with the instantaneous period constant, solely the excitation shape is
varied by increasing m from 0 to 1, and there is thus a smooth transition from a sine function
to a square wave. Also, ξ(t) is the (stationary Gaussian) fluctuating force associated with
the coupling to the thermal bath. The fluctuation dissipation theorem [16] relates η and ξ(t):
〈ξ(t)ξ(t ′)〉 = 2ησδ(t − t ′), where the normalized temperature σ controls the noise strength
and δ(t − t ′) is the Dirac delta function. Numerically, the lifetime of transient chaos is defined
by τ = tf − ti , where ti , tf are the first and last instants, respectively, at which the particle’s
energy reaches the energy level of the unperturbed separatrix. In the presence of noise (σ > 0),
an average over a number of realizations of equation (8) is taken to obtain the mean lifetime.
For the purely deterministic (σ = 0) case of a sinusoidal (m = 0) excitation with a linear chirp
(n = 1), for example, and after calculating the resulting integrals by residues, one obtains the
corresponding MF:

M±
Duff(t0) = −D ∓ B0 cos(ωt0) ± α1

(
B2 + B0t

2
0

)
sin(ωt0)

∓ α1B1t0 cos(ωt0) + O
(
γα2

1

)
, (9)
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Figure 2. Onset time (circles), ti, and lifetime (squares, inset), τ , of transient chaos corresponding
to a dimensionless Duffing oscillator (equation (8)) for m = 0, σ = 0, η = 0.5, γ = 0.4 and
ω = 0.493. Hence, ωth,2 = 1.11736, ωth,1 = 0.49371 from M±

Duff(t0) (equation (9)). The solid
lines indicate fits according to the scaling laws (5) and (6), respectively.

(a) (b)

(c) (d )

Figure 3. Autoresonant response of a dimensionless Duffing oscillator for a linear chirp
α1 = 3 × 10−4 (equation (8)). (a) Position versus time and final equilibrium (dashed line).
(b) Energy and average energy (over a few periods 2π/ω, thick black line) versus time. (c) Phase
space trajectory and period-1 attractor existing at αn = 0 (thick black line). (d) Energy versus
position (the dashed line indicates the separatrix energy level as in version (b)). The remaining
parameters are the same as in figure 2.

where the sign +(−) corresponds to the right (left) homoclinic orbit of the unperturbed Duffing
oscillator (η = γ = 0), and

D ≡ 4η/3,

B0 ≡
√

2πγωsech
(πω

2

)
,

B1 ≡ 4
√

2γ

[
π

2
− π2ω

4
tanh

(πω

2

)]
sech

(πω

2

)
,

B2 ≡
√

2

8
γπ2sech3

(πω

2

)
[4 sinh(πω) − πω cosh(πω) + 3πω].
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Figure 4. Lifetime of transient chaos corresponding to a dimensionless Duffing oscillator
(equation (8)) for quadratic (n = 2, squares) and cubic (n = 3, circles) chirps. The solid lines
indicate fits according to the scaling law (7). Also shown is the strange attractor existing at α2,3 = 0.
Fixed parameters: m = 0, σ = 0, η = 0.154, γ = 0.2, ω = 1.1. Hence, ωth,2 = 1.714 04 from
M±

Duff(t0) (equation (9)).

Figure 5. Mean lifetime of transient chaos corresponding to a dimensionless Duffing oscillator
(equation (8)) for a linear chirp in the presence of noise (top panel, m = 0, γ = 0.4) and subjected
to elliptic excitations (bottom panel, σ = 0, γ = 0.3). The solid lines indicate fits according to
the scaling law (6). Fixed parameters: η = 0.5, ω = 0.493.

The results for the case of a periodic (chaotic) attractor existing at αn = 0 are shown in
figure 2 (figure 4). While a linear chirp is considered in figures 2 and 3, figure 4 shows the
results for quadratic and cubic chirps. Figures 2 and 4 show excellent agreement between
the numerical results and the predicted scaling laws for both the onset time and the lifetime
of transient chaos. Figure 3(b) shows the AR-induced increase of energy over time until the
separatrix energy level is reached, indicating the onset of transient chaos (see figures 3(a)
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and (d)), followed by a decrease of energy when the dynamics becomes effectively purely
dissipative (see figure 3(c)). Note that the average energy remains roughly constant during
transient chaos. The robustness of the scaling laws versus both the presence of additive noise
and re-shaping of the autoresonant excitation is shown in figure 5. Note that, for the elliptic
excitation, ωth,i , i = 1, 2, are functions of m, which is the reason for the different prefactors
in the fits for m = 0.995 and m = 1 − 10−14 (figure 5, bottom). For the noisy case (figure 5,
top), the origin of the different prefactors in the fits for σ = 0, σ = 0.001 and σ = 0.004 may
be analyzed on the basis of a stochastic MA (the analysis is beyond the scope of the present
work).

In summary, general inverse-power laws relating both the onset and lifetime of transient
chaos and the parameters of escape-inducing autoresonant excitations have been theoretically
derived for generic, dissipative and multistable flows. Numerical simulations showed the
robustness of these scaling laws against both the presence of additive noise and driving re-
shaping. Since the critical exponents were found to solely depend on the chirp’s order, such
scaling laws are expected to remain valid for even more general dissipative systems including
spatiotemporal chaotic systems [17]. The present results can be readily tested experimentally
(for example in mechanical and laser systems as well as in the areas of electrical engineering
and environmental studies [18]) and can find an application to optimally control elementary
dynamic processes characterized by chaotic escapes from a potential well, such as diverse
atomic and molecular processes, transport phenomena in dissipative lattices and control of the
electron dynamics in quantum solid-state devices. Regarding quantum systems, Josephson
tunnel junctions are among the main candidates where the above scaling laws could be
experimentally confirmed. In such a case, a classical description is given by the resistively
and capacitively shunted junction model [19].
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